Do you have a technical challenge? Get in touch with us
Geotechnical investigation
Ground anchor testing
Drivability
Structural monitoring
Measurement and monitoring of noise
Structural monitoring
Strain Gauge Testing in Structural Monitoring
Landslide Monitoring
Measurement of crack width
All industries
Geotechnical testing and structural monitoring ensure building safety and minimize the risk of settlement or damage. Forecasting and precise measurements allow for project optimization and cost reduction in future maintenance.
Computational forecasts, pile load tests, and settlement analysis enable better adaptation of foundations to soil conditions. Our solutions support risk management and enhance the durability of building structures.
Structural monitoring and foundation testing are crucial for energy facilities such as power plants and wind farms. Our technologies help control the impact of vibrations on critical infrastructure and verify the quality of geotechnical work.
Pile load testing is carried out at an early stage of bridge construction. Continuous monitoring and structural analysis help detect damages in bridges, viaducts, and roads early, increasing user safety and optimizing maintenance costs.
Vibration measurements and track monitoring assess the impact of loads on the stability of embankments and railway bridges. Our studies help minimize failure risks and enhance the durability and safety of railway infrastructure.
Deformation and displacement monitoring provide real-time safety assessments of tunnels during construction and operation. Our research helps mitigate risks related to settlement, leakage, and other structural damages.
is essential for assessing the acoustic impact of construction and infrastructure projects. By continuously recording and analyzing noise levels, this service ensures compliance with environmental standards and protects both nearby residents and workers.
How it works?
Specialized sound level meters and data loggers are deployed on-site to measure sound pressure levels over time. Monitoring can be continuous or periodic and is typically tailored to local regulations or project-specific noise limits. Data is stored and analyzed to identify exceedances, patterns, and potential sources.
Class 1 sound meters and weatherproof enclosures are positioned in sensitive or regulatory-relevant locations
The system records noise levels in real time, storing metrics such as LAeq, Lmax, and peak values.
Monitoring systems may send automatic alerts when thresholds are exceeded
Collected data is analyzed and presented in charts and reports for environmental or legal documentation
Process steps
Monitoring is adjusted to the specific phase of construction or operation, providing continuous insight into acoustic conditions.
Define monitoring zones
Identify sensitive areas and applicable noise standards.
Calibrated installation
Place and calibrate equipment to ensure accurate and reliable data
Continuous or periodic logging
Record acoustic pressure levels over the duration of monitoring.
Compliance assessment
Compare data with legal thresholds and generate visual reports.
Benefits
Ensures adherence to local or project-specific noise limits.
Reduces impact on nearby buildings, homes, and public spaces.
Helps manage workplace exposure to harmful noise levels.
Creates an auditable record of noise levels for investors or authorities.
Where it applies
It depends on project duration and local laws—monitoring can range from a few days to several months.
Common metrics include LAeq (equivalent continuous sound level), Lmax (maximum), and Lpeak (impulse peaks).
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Filter by service:
Tutaj znajdziesz kluczowe materiały techniczne, w tym instrukcje, artykuły eksperckie i dokumentację. Udostępniamy rzetelne informacje wspierające inżynierów i inwestorów w podejmowaniu świadomych decyzji. Skorzystaj z wiedzy, która pomaga w planowaniu, realizacji i eksploatacji konstrukcji.
We’ve already solved many problems, and for new ones, we’ll develop an individual approach. Want to discuss monitoring or pile testing? Fill out the form and let us know.
Geotechnical investigation
We operate in Europe as:
DK
DMT Engineers A/S
DMT Engineers A/S
Skomagervej 13C
7100 Vejle
CVR-np. 12476779
DE
DMT Ingenieure GmbH
DMT Ingenieure GmbH
Zum Audorfer See 9
D-24782 Büdelsdorf
Registergericht: Amtsgericht Kiel HRB 12196 KI
Geschäftsführer: Lars Gøttrup Christensen
USt-IdNr.: DE134866110
Sitz der Gesellschaft: Zum Audorfer See 9, D-24782 Büdelsdorf
All rights reserved. DMT 2025.
Geotechnical testing and structural monitoring ensure building safety and minimize the risk of settlement or damage. Forecasting and precise measurements allow for project optimization and cost reduction in future maintenance.
Computational forecasts, pile load tests, and settlement analysis enable better adaptation of foundations to soil conditions. Our solutions support risk management and enhance the durability of building structures.
Structural monitoring and foundation testing are crucial for energy facilities such as power plants and wind farms. Our technologies help control the impact of vibrations on critical infrastructure and verify the quality of geotechnical work.
Pile load testing is carried out at an early stage of bridge construction. Continuous monitoring and structural analysis help detect damages in bridges, viaducts, and roads early, increasing user safety and optimizing maintenance costs.
Vibration measurements and track monitoring assess the impact of loads on the stability of embankments and railway bridges. Our studies help minimize failure risks and enhance the durability and safety of railway infrastructure.
Deformation and displacement monitoring provide real-time safety assessments of tunnels during construction and operation. Our research helps mitigate risks related to settlement, leakage, and other structural damages.