Do you have a technical challenge? Get in touch with us
Geotechnical investigation
Ground anchor testing
Drivability
Structural monitoring
Measurement and monitoring of noise
Structural monitoring
Strain Gauge Testing in Structural Monitoring
Landslide Monitoring
Measurement of crack width
All industries
Geotechnical testing and structural monitoring ensure building safety and minimize the risk of settlement or damage. Forecasting and precise measurements allow for project optimization and cost reduction in future maintenance.
Computational forecasts, pile load tests, and settlement analysis enable better adaptation of foundations to soil conditions. Our solutions support risk management and enhance the durability of building structures.
Structural monitoring and foundation testing are crucial for energy facilities such as power plants and wind farms. Our technologies help control the impact of vibrations on critical infrastructure and verify the quality of geotechnical work.
Pile load testing is carried out at an early stage of bridge construction. Continuous monitoring and structural analysis help detect damages in bridges, viaducts, and roads early, increasing user safety and optimizing maintenance costs.
Vibration measurements and track monitoring assess the impact of loads on the stability of embankments and railway bridges. Our studies help minimize failure risks and enhance the durability and safety of railway infrastructure.
Deformation and displacement monitoring provide real-time safety assessments of tunnels during construction and operation. Our research helps mitigate risks related to settlement, leakage, and other structural damages.
is a fast and reliable method for estimating the bearing capacity of foundation piles. Using a controlled hammer blow, the pile's response is measured and analyzed to assess performance, confirm design assumptions, or optimize installation parameters.
Dynamic load testing involves striking the top of the pile with a heavy hammer (typically during or after installation) while sensors measure acceleration and strain. These signals are used to calculate force and displacement over time. The test provides a quick assessment of load capacity and structural integrity using wave equation-based analysis.
Strain and acceleration sensors are mounted on the pile head before impact.
A drop hammer or driving rig applies one or several blows to generate a dynamic response.
High-frequency data is collected in real time during the impact.
Software calculates the bearing capacity and identifies potential anomalies based on signal interpretation.
This method is often used during pile driving or shortly after installation to validate geotechnical design and improve efficiency.
Sensor installation
Mount sensors and verify secure attachment for accurate signal capture.
Create dynamic force
Strike the pile with a calibrated hammer to generate stress waves.
Real-time monitoring
Collect and store force and velocity signals from sensors.
Estimate capacity
Analyze data using signal matching (e.g. CAPWAP) to determine ultimate capacity
Enables rapid on-site testing during piling operations.
Requires less equipment and time than static load testing.
Provides reliable data for bearing capacity and driving efficiency
Helps verify proper pile installation and detect potential defects
While static testing is the most direct method, dynamic testing provides a fast and reliable approximation of pile capacity when interpreted by experienced engineers.
It is best suited for driven piles but can be used on some bored piles with special equipment and preparation.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Filter by service:
Tutaj znajdziesz kluczowe materiały techniczne, w tym instrukcje, artykuły eksperckie i dokumentację. Udostępniamy rzetelne informacje wspierające inżynierów i inwestorów w podejmowaniu świadomych decyzji. Skorzystaj z wiedzy, która pomaga w planowaniu, realizacji i eksploatacji konstrukcji.
We’ve already solved many problems, and for new ones, we’ll develop an individual approach. Want to discuss monitoring or pile testing? Fill out the form and let us know.
Geotechnical investigation
We operate in Europe as:
DK
DMT Engineers A/S
DMT Engineers A/S
Skomagervej 13C
7100 Vejle
CVR-np. 12476779
DE
DMT Ingenieure GmbH
DMT Ingenieure GmbH
Zum Audorfer See 9
D-24782 Büdelsdorf
Registergericht: Amtsgericht Kiel HRB 12196 KI
Geschäftsführer: Lars Gøttrup Christensen
USt-IdNr.: DE134866110
Sitz der Gesellschaft: Zum Audorfer See 9, D-24782 Büdelsdorf
All rights reserved. DMT 2025.
Geotechnical testing and structural monitoring ensure building safety and minimize the risk of settlement or damage. Forecasting and precise measurements allow for project optimization and cost reduction in future maintenance.
Computational forecasts, pile load tests, and settlement analysis enable better adaptation of foundations to soil conditions. Our solutions support risk management and enhance the durability of building structures.
Structural monitoring and foundation testing are crucial for energy facilities such as power plants and wind farms. Our technologies help control the impact of vibrations on critical infrastructure and verify the quality of geotechnical work.
Pile load testing is carried out at an early stage of bridge construction. Continuous monitoring and structural analysis help detect damages in bridges, viaducts, and roads early, increasing user safety and optimizing maintenance costs.
Vibration measurements and track monitoring assess the impact of loads on the stability of embankments and railway bridges. Our studies help minimize failure risks and enhance the durability and safety of railway infrastructure.
Deformation and displacement monitoring provide real-time safety assessments of tunnels during construction and operation. Our research helps mitigate risks related to settlement, leakage, and other structural damages.