Do you have a technical challenge? Get in touch with us
Geotechnical investigation
Structural monitoring
All industries
Geotechnical testing and structural monitoring ensure building safety and minimize the risk of settlement or damage. Forecasting and precise measurements allow for project optimization and cost reduction in future maintenance.
Computational forecasts, pile load tests, and settlement analysis enable better adaptation of foundations to soil conditions. Our solutions support risk management and enhance the durability of building structures.
Structural monitoring and foundation testing are crucial for energy facilities such as power plants and wind farms. Our technologies help control the impact of vibrations on critical infrastructure and verify the quality of geotechnical work.
Pile load testing is carried out at an early stage of bridge construction. Continuous monitoring and structural analysis help detect damages in bridges, viaducts, and roads early, increasing user safety and optimizing maintenance costs.
Vibration measurements and track monitoring assess the impact of loads on the stability of embankments and railway bridges. Our studies help minimize failure risks and enhance the durability and safety of railway infrastructure.
Deformation and displacement monitoring provide real-time safety assessments of tunnels during construction and operation. Our research helps mitigate risks related to settlement, leakage, and other structural damages.
assesses the feasibility of installing piles or sheet piles into the ground using impact or vibratory driving equipment. It ensures that the piles can be embedded to the required depth without risk of refusal, damage, or unacceptable ground behavior.
How it works
The analysis uses geotechnical data, pile geometry, driving equipment parameters, and soil resistance models to simulate and predict the driving process. It helps optimize installation methods, select appropriate machinery, and minimize risks.
Gather soil profiles, pile type, dimensions, and equipment specifications.
Use specialized software (e.g. GRLWEAP, AllWave-PDP) to simulate pile driving behavior.
Calculate blow count vs. depth curves and predict potential refusal or driving difficulties.
Deliver guidance on hammer energy, pile type, and need for pre-drilling or cushioning.
Process steps
This service is typically conducted before construction begins to plan and validate piling strategies.
Geotechnical and structural inputs
Review borehole logs, CPT data, pile drawings, and ground conditions.
Hammer and pile specs
Define driving hammer model, energy output, and pile section properties.
Digital prediction
Model soil-pile interaction and expected resistance vs. depth using relevant tools.
Results and interpretation
Provide detailed charts, critical depths, installation feasibility, and mitigation advice.
Benefits
Identifies potential refusal, overstressing, or premature stoppage before mobilization.
Helps avoid unnecessary equipment changes or delays during foundation works.
Minimizes risk of pile damage and ensures compliance with driving limits.
Supports contractor and designer in selecting optimal pile-driving strategy.
Gdzie analiza pogrążalności znajduje zastosowanie
Not mandatory, but highly recommended when installing piles in complex soils or with limited working space.
All driven elements including concrete piles, steel tubes, H-piles, and sheet piles.
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Korem ipsum dolor sit amet, consectetur adipiscing elit. Nunc vulputate libero et velit interdum, ac aliquet odio mattis. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos himenaeos. Curabitur tempus urna at turpis condimentum lobortis. Ut commodo efficitur neque. Ut diam quam, semper iaculis condimentum ac, vestibulum eu nisl.
Filter by service:
Tutaj znajdziesz kluczowe materiały techniczne, w tym instrukcje, artykuły eksperckie i dokumentację. Udostępniamy rzetelne informacje wspierające inżynierów i inwestorów w podejmowaniu świadomych decyzji. Skorzystaj z wiedzy, która pomaga w planowaniu, realizacji i eksploatacji konstrukcji.
We’ve already solved many problems, and for new ones, we’ll develop an individual approach. Want to discuss monitoring or pile testing? Fill out the form and let us know.
Geotechnical investigation
We operate in Europe as:
DK
DMT Engineers A/S
DMT Engineers A/S
Skomagervej 13C
7100 Vejle
CVR-np. 12476779
DE
DMT Ingenieure GmbH
DMT Ingenieure GmbH
Zum Audorfer See 9
D-24782 Büdelsdorf
Registergericht: Amtsgericht Kiel HRB 12196 KI
Geschäftsführer: Lars Gøttrup Christensen
USt-IdNr.: DE134866110
Sitz der Gesellschaft: Zum Audorfer See 9, D-24782 Büdelsdorf
All rights reserved. DMT 2025.
Geotechnical testing and structural monitoring ensure building safety and minimize the risk of settlement or damage. Forecasting and precise measurements allow for project optimization and cost reduction in future maintenance.
Computational forecasts, pile load tests, and settlement analysis enable better adaptation of foundations to soil conditions. Our solutions support risk management and enhance the durability of building structures.
Structural monitoring and foundation testing are crucial for energy facilities such as power plants and wind farms. Our technologies help control the impact of vibrations on critical infrastructure and verify the quality of geotechnical work.
Pile load testing is carried out at an early stage of bridge construction. Continuous monitoring and structural analysis help detect damages in bridges, viaducts, and roads early, increasing user safety and optimizing maintenance costs.
Vibration measurements and track monitoring assess the impact of loads on the stability of embankments and railway bridges. Our studies help minimize failure risks and enhance the durability and safety of railway infrastructure.
Deformation and displacement monitoring provide real-time safety assessments of tunnels during construction and operation. Our research helps mitigate risks related to settlement, leakage, and other structural damages.